
3D Paintbrush: Local Stylization of 3D Shapes with Cascaded Score Distillation

Dale Decatur
University of Chicago

Itai Lang
University of Chicago

Kfir Aberman
Snap Research

Rana Hanocka
University of Chicago

Heart shaped sunglasses Colorful crochet hat Gold chain necklace Stained glass turtle shell
Figure 1. Utilizing only a text prompt as guidance, 3D Paintbrush seamlessly generates local stylized textures on bare meshes. Our
approach produces a localization map (yellow regions) and a highly detailed texture map which conforms to it.

Abstract

We present 3D Paintbrush, a technique for automati-
cally texturing local semantic regions on meshes via text
descriptions. Our method is designed to operate directly
on meshes, producing texture maps which seamlessly inte-
grate into standard graphics pipelines. We opt to simultane-
ously produce a localization map (to specify the edit region)
and a texture map which conforms to it. This approach im-
proves the quality of both the localization and the styliza-
tion. To enhance the details and resolution of the textured
area, we leverage multiple stages of a cascaded diffusion
model to supervise our local editing technique with gen-
erative priors learned from images at different resolutions.
Our technique, referred to as Cascaded Score Distillation
(CSD), simultaneously distills scores at multiple resolutions
in a cascaded fashion, enabling control over both the gran-
ularity and global understanding of the supervision. We
demonstrate the effectiveness of 3D Paintbrush to locally
texture different semantic regions on a variety of shapes.
Project page: https://threedle.github.io/3d-
paintbrush

1. Introduction
The ability to edit existing high-quality 3D assets is a funda-
mental capability in 3D modeling workflows. Recent works
have shown exceptional results for text-driven 3D data cre-
ation [32, 38, 48, 53, 58, 59], but focus on making global

edits. While some progress has been made on local edit-
ing using an explicit localization of the edit region [49, 67],
these regions are often coarse and lack fine-grained detail.
Highly-detailed and accurate localizations are important for
constraining the edits to be within a specific region, prevent-
ing changes unrelated to the target edit. Furthermore, while
meshes with texture maps are the de facto standard in graph-
ics pipelines, existing local editing work does not natively
operate on meshes nor produce texture maps for them.

In this work we develop 3D Paintbrush, a method for
automatically texturing local semantic regions on meshes
via text descriptions. Our method is designed to operate
directly on meshes, producing texture maps which seam-
lessly integrate into standard graphics pipelines. 3D Paint-
brush is controlled via intuitive, free-form text input, allow-
ing users to describe their edits using open vocabulary on
a wide range of meshes. Specifically, given an input mesh
and a text prompt, 3D Paintbrush produces the correspond-
ing high-quality texture map and a localization region to
confine it. To enhance the details and resolution of the lo-
cally textured area, we introduce Cascaded Score Distilla-
tion (CSD) which leverages multiple stages of a cascaded
diffusion model. Our explicit localization masks can be
used to layer our edit texture onto existing textures.

We opt to represent both our localization map and tex-
ture map as neural fields encoded by multi-layer percep-
tions. Our method synthesizes both a fine-grained localiza-
tion mask and high-quality texture in tandem. Simultane-

1

https://threedle.github.io/3d-paintbrush
https://threedle.github.io/3d-paintbrush


Colorful polo shirt Superman emblem Tie-dye apron Muay Thai shorts Composite
Figure 2. Precise composition of multiple local textures. 3D Paintbrush produces highly-detailed textures that effectively adhere to the
predicted localizations. This enables seamlessly compositing local textures without unwanted fringes (right).

ously generating the localization and texture maps improves
the quality of each. The texture map drives the localization
to become more detailed and intricate. The localization ex-
plicitly masks the texture, ensuring a coherent local style
which respects the localization boundary.

Our local stylization operates in small regions, neces-
sitating higher resolution supervision compared to global
generative techniques. Existing approaches leverage pre-
trained text-to-image diffusion models with Score Distilla-
tion Sampling (SDS) to supervise text-driven optimizations
[31, 58]. Text-to-image diffusion models often contain mul-
tiple cascaded stages in order to achieve high resolution
[21], but standard SDS only utilizes the first low-resolution
stage of the cascaded model. Our technique, referred to
as Cascaded Score Distillation (CSD), simultaneously dis-
tills scores at multiple resolutions in a cascaded fashion,
enabling control over both the granularity and global un-
derstanding of the supervision. Since cascaded stages are
trained entirely independently, our insight is to formulate a
distillation loss that incorporates all stages in tandem.

In summary, our method enables local text-driven styl-
ization of meshes. By explicitly learning a localization
in tandem with the texture, we ensure that our edits are
bounded by the localized region. Using our CSD, which
leverages all stages of the diffusion model, we can control
the granularity and global understanding of the supervision
achieving higher resolution textures and localizations than
standard SDS. We demonstrate that 3D Paintbrush yields
diverse local texturing on a variety of shapes and seman-
tic regions and outperforms baselines both qualitatively and
quantitatively.

2. Related Work

A large body of work has studied stylization and analysis of
3D content. Existing work uses neural networks and opti-
mization [6, 15, 19, 22, 23, 30, 33, 37–39, 41, 42, 51, 60, 62]
for mesh stylization. Other works use a neural radiance field

NeRF [40] for stylization [11, 34, 64]. Yet, these works fo-
cus on stylization rather than localization. Large 2D models
have been used for analytical tasks in 3D such as localiza-
tion and segmentation [1, 2, 10, 17, 27, 28, 54, 57, 67], how-
ever, none of these works produce textures. Furthermore,
only [1, 2, 10, 67] aim to produce a tight localization on
meshes and we find that these approaches still produce rel-
atively smooth localization regions that cannot capture the
high frequency details needed for sharp local edits.

Text-driven generation and editing. Existing works have
leveraged pre-trained 2D models to generate 3D representa-
tions that adhere to a text prompt [4, 12, 16, 25, 29, 39, 41,
63]. Many recent methods [9, 26, 32, 44, 50, 53, 53, 58, 66]
use score distillation [44, 58] from 2D models to gener-
ate both geometry and styles from scratch, while other
works optimize the texture of an existing, fixed geome-
try [8, 38, 39, 47]. Other work aims to generate 3D rep-
resentations from images [14, 35, 36, 45].

Existing text-to-3D generative methods [38, 44, 58, 59]
can be used to perform global edits [18, 48, 67]. However,
since these approaches do not have explicit edit localiza-
tions, they struggle to perform highly specific local edits
without changing other components of the 3D representa-
tion’s appearance. Different from our objective, these works
aim to generate or globally manipulate existing 3D repre-
sentations, while our work focuses on local editing.

Text-driven local editing. Many approaches can perform
global 3D edits and progress has been made on local editing
in images and videos [5, 7, 13, 20]. Yet, few works have ad-
dressed the task of precise, local editing for 3D representa-
tions. Local editing is challenging since, in addition to syn-
thesizing the edit, methods need to localize the edit region.
FocalDreamer [31] obtains precise user defined edit regions
at the cost of requiring additional, tedious user input com-
pared to strictly text-driven approaches. Vox-E [49] (operat-
ing on voxel representations) and DreamEditor [67] (oper-
ating on NeRFs) both use attention maps to localize an edit

2



Figure 3. Overview of 3D Paintbrush. Each point on the surface of the mesh is passed into three different branches to produce a
localization probability, texture map, and background map. We texture three different variants of the same mesh with the localization,
texture, and background maps and render them from the same viewpoint. Each image along with the corresponding text condition is used
to compute the CSD loss.

region and thus the localization has no visual meaning in
isolation. Our approach imposes a visual loss on our local-
izations in order to enforce sharp boundaries that are tightly
coupled with our texture edits. Additionally, since exist-
ing purely text-driven local editing approaches only work
on voxels and NeRFs, our approach is the first to enable
text-driven local editing on meshes.

High resolution text-to-3D. Several works have explored
techniques to increase the resolution for text-to-3D. Many
recent works apply SDS to latent diffusion models [32,
38, 58, 59, 66]. Recent works backpropagate the gradi-
ent through the encoder to get gradients in higher resolu-
tion 512x512 RGB space [32, 59, 66]. Other works use
timestep annealing to give less noisy supervision towards
the end of the optimization, thus increasing the detail of the
generations [24, 59]. HiFA [66] proposes denoising over
multiple successive timesteps each iteration to provide bet-
ter gradients and achieve high fidelity appearance. While all
of these approaches have shown impressive improvements
to the resolution of SDS supervision, SDS only utilizes the
base stage (not super-resolution stages). Thus, these pro-
posed improvements are orthogonal to ours and can be in-
corporated at the super-resolution stages using CSD as well.

3. Method
We show an overview of our method in Fig. 3. The inputs
to our system are a mesh M and a text description y of
the desired local edit. Our system produces a local texture
on the mesh M that adheres to the text prompt y. To su-
pervise our optimization, we use score distillation with a
pretrained text-to-image diffusion model. However, local
editing requires higher detail than standard generation due
to the small size and granularity of the desired edits. In
order to further improve the detail of our localization and
texture, we introduce Cascaded Score Distillation (CSD), a

technique that distills scores at multiple resolutions of the
2D cascaded model. This approach enables leveraging all
stages of a cascaded model and provides control over both
the detail and global understanding of the supervision.

3.1. Local Neural Texturing

3D Paintbrush represents local textures as neural texture
maps over the surface of a mesh M defined by vertices
V ∈ Rn×3 and faces F ∈ {1, ..., n}m×3. Extracting
an explicit texture map from our neural textures is trivial,
making our representation compatible with existing graph-
ics pipelines. Furthermore, using texture maps enables
producing high resolution textures (i.e. sub-triangle val-
ues) without a computationally expensive high resolution
mesh. A straight-forward approach of directly optimiz-
ing texture values results in texture maps with artifacts and
noise (see supplemental material). To mitigate this, we
leverage the smoothness of neural networks [46]. However,
a straight-forward application of an MLP to a 2D texture
map ((u, v) → (r, g, b)) is inherently invalid at the texture
seams (e.g. erroneous interpolations at boundaries), which
may lead to texture discontinuities on the rendered mesh.

We instead formulate our MLPs to operate on 3D co-
ordinates leading to predictions in 3D that are inherently
smooth and without any seam discontinuities. To do so, we
invert the UV mapping ψ(x, y, z) = (u, v) to get a map
ψ−1(u, v) = (x, y, z) from 2D texels to 3D coordinates on
the surface of the mesh. We optimize our MLPs with the
3D coordinates obtained from the 2D texel centers. We em-
ploy two primary networks, one for localization and one for
texturing. Our neural localization MLP is a function Fθ
that maps a 3D coordinate x = (x, y, z) to a probability p
(which we map back to a 2D localization map). Similarly,
our neural texture MLP is a function Fϕ that takes in a 3D
coordinate and outputs an RGB value (which we map back
to a 2D texture image). Our architecture first passes the 3D

3



Camo poncho Beautiful rose Colorful doily seat cushion Batman emblem Rainbow headband

Tiger stripe belt Rainbow shinguards Tie-dye shirt Red flip flops Green ridged turtle shell
Figure 4. 3D Paintbrush produces highly detailed textures and localizations for a diverse range of meshes and prompts. Our method
synthesizes meaningful local edits on shapes, demonstrating both global and local part-level understanding.

coordinates through positional encoding [52] before going
through a 6-layer MLP. This formulation of using MLPs
defined on the 3D surface leads to a neural texture which
produces smoothly varying outputs in 3D, even though our
2D texture maps have discontinuities at the texture seams.
The smoothness provided by the MLPs reduces artifacts,
produces less noisy textures, and provides super resolution
capabilities. Although we optimize our MLPs with 3D co-
ordinates mapped from 2D texel centers, during inference,
we may query the MLP for any value (i.e. sub-texels that
enable super resolution texture maps even across seams).

3.2. Visual Guidance for Localized Textures

We guide our optimization using three distinct losses that
encourage both the localization and texture towards visu-
ally desirable results. Each loss is visualized as a branch in
Fig. 3 – top branch: localization loss, middle branch: local
texture map loss, bottom branch: background loss.
Local texture map loss. First, we obtain our local-
ization map Lmap ∈ [0, 1]H×W from the neural local-
ization MLP Lmap = ψ(Fθ(x)) and the texture map
Tmap ∈ [0, 1]H×W×3 from the neural texture MLP Tmap =
ψ(Fϕ(x)). We use the localization Lmap to mask the tex-
ture Tmap to get a local texture map T ′

map which only
contains textures inside the localization region. We apply
the masked texture T ′

map to our mesh M to get a locally-
textured mesh Mt and construct a local-texture text prompt
yt from the input text y (middle branch Fig. 3). We then
supervise our optimization using a text-conditioned visual
loss (cascaded score distillation, see Sec. 3.4) on Mt and
yt. By applying a visual loss to the localization-masked tex-
ture, we get informative and meaningful gradients for both
our texture MLP and our localization MLP.
Localization loss. Using only the texture loss allows for
trivial solutions where the mask contains a region that in-
cludes, but is much larger than, the desired localization re-

gion. To encourage the localization region to be meaning-
ful, we employ a visual loss on the localization region in
isolation (similar to 3D Highlighter [10]). Specifically, we
blend a (yellow) color onto the mesh according to the lo-
calization map to get a localization-colored mesh Ml (top
branch Fig. 3). From the text input y, we derive a target
localization prompt yl describing the localized region in the
format used in 3D Highlighter [10]. We then use Ml and yl
as input to the text-conditioned visual loss. Using this loss
significantly improves the detail and quality of the localiza-
tion (see supplemental material).

Background loss. Using only the top two branches in Fig. 3
leads to broader localizations that incorporate superfluous
elements characteristic of the input 3D model (i.e. a bill
on a duck), in addition to the desired localization region
(see supplemental material). To mitigate this, we learn a
background texture Bmap ∈ [0, 1]H×W×3 that intention-
ally contains these characteristic elements of the input 3D
shape in the inverse of the localization region 1 − Lmap
(the area outside the localization region). Specifically, we
blend both the background texture Bmap (using 1− Lmap)
and a yellow color (using Lmap) to get a composited tex-
ture B′

map = Lmap(YELLOW)+ (1−Lmap)Bmap (bottom
branch in Fig. 3). We apply the composited texture B′

map

to the mesh to get Mb and then supervise the background
MLP using a visual loss conditioned on both Mb and a tar-
get text yb (derived from y). The target text yb describes
the generic object class (i.e. ‘cow’ in Fig. 3) with a (yellow)
colored localization region. See supplemental material for
more details. The third loss directly encourages incorpo-
rating the superfluous elements in the background texture
which discourages the localization region from incorporat-
ing such undesired elements (since Lmap and 1−Lmap are
inverse masks).

Key to our method is the simultaneous optimization of
the localization map (that specifies the edit region) and the

4



Simultaneous In series Independent
Figure 5. Impact of simultaneous optimization. Simultaneously
optimizing the localization and texture (left) results in higher-
detailed textures which effectively conform to the predicted local-
ization. If we first optimize the localization, then optimize the tex-
ture within the localization region (middle), both the localization
and texture are less detailed. Independent (right): if we optimize
the localization independently (independent: left) and the texture
independently (independent: middle), the texture does not align
with the localization and thus the masked texture contains fringe
artifacts (independent: right).

texture map that conforms to it. This approach improves
the quality of both the localization and the stylization. The
texture map drives the localization to become more detailed
and intricate, while the localization explicitly masks the tex-
ture, ensuring a coherent local style which respects the lo-
calization boundary (see Fig. 5).

3.3. Score Distillation and Cascaded Diffusion

Score Distillation. To guide our local stylization, we
leverage powerful pretrained text-to-image diffusion mod-
els. Existing approaches use these models in conjunction
with Score Distillation Sampling (SDS) to supervise text-
driven optimizations [44, 58]. For each iteration of an opti-
mization of an image x that we want to supervise with dif-
fusion model ϕ and text prompt y, SDS [44] proposes the
following gradient:

∇xLSDS(ϕ, x, y) = w(t)(ϵϕ(zt, t, y)− ϵ) (1)

where timestep t ∼ U({1, . . . , T}) is sampled uniformly
and noise ϵ ∼ N (0, I) is Gaussian. The noisy image zt
is obtained by applying a timestep-dependent scaling of ϵ
to the image x. The weight w(t) is a timestep-dependent
weighting function and ϵϕ(zt, t, y) is the noise predicted by
the diffusion model conditioned on zt, t, and y. Note that
Eq. (1) omits the U-Net Jacobian term (not needed in prac-
tice [44]). This objective is similar to the objective used in
diffusion model training, however, instead of optimizing the
weights of the model, the gradient is applied to the image x.

Cascaded Diffusion. Text-to-image diffusion models often
contain multiple cascaded stages at different resolutions in
order to achieve high resolution outputs [21]. These cas-
caded diffusion models consist of a base stage ϕ1 (stage 1)
and some number of super-resolution stages ϕi>1 (stages
2-N ). The base stage is identical to a standard diffu-
sion model, predicting noise ϵϕ1(z1t , t, y) conditioned on

noisy image z1t , timestep t, and text prompt y. How-
ever, the super-resolution stages are conditioned on two
differently-noised images: one at the current resolution
(zit with timestep t and noise ϵi) and one at the lower
resolution (zi−1

s with timestep s and noise ϵi−1). The
predicted noise for the super-resolution stage is given by
ϵϕi(zit, t, z

i−1
s , s, y). During inference, the lower resolution

input image is obtained by adding noise to the output of the
prior stage. However in training, both the high and low reso-
lution images are obtained by sampling a single image from
the training dataset and rescaling it to different resolutions.

Standard SDS [44] only utilizes the first, low-resolution
base stage, thus neglecting the full potential of the cascaded
model. It is not immediately obvious how to formulate
a score distillation technique for all stages of a cascaded
diffusion model since super-resolution stages take multiple
resolution inputs and, at inference, they require a fully de-
noised output from the prior stage [21]. We take inspira-
tion from SDS and use the perspective of diffusion train-
ing as opposed to inference, and extend it to the training of
cascaded diffusion models. To our knowledge, we are the
first to consider score distillation using the cascaded super-
resolution stages.

3.4. Cascaded Score Distillation

CSD overview. Our technique, referred to as Cascaded
Score Distillation (CSD), simultaneously distills scores at
multiple resolutions in a cascaded fashion (illustrated in
Fig. 6). Since the stages of a cascaded diffusion model
ϕ are trained entirely independently of one another, our
insight is to formulate a distillation loss that incorporates
gradients from all stages (ϕ1, ..., ϕN ) simultaneously. We
observe that different stages of the cascaded model pro-
vide different levels of granularity and global understanding
(Fig. 7). Controlling the influence of each stage provides
control over the details and the corresponding localization
of the supervision (Fig. 8).

CSD Formalization. Consider a mesh Mθ with a neural
texture parameterized by an MLP θ (This MLP could be
either Fθ, Fϕ, and Fψ in Sec. 3.2). We first render Mθ

at N different resolutions using a differentiable renderer g
to get multiple images g(Mθ) = x = {x1 . . . xN} such
that xi is the same resolution as stage ϕi. For the base
stage ϕ1, we perform standard SDS using Eq. (1) on x1

and prompt y to get a gradient ∇x1 . For all stages ϕi for
i > 1, we sample two timesteps t, s ∼ U({1, . . . , T}),
noise ϵi ∼ N (0, I) at the resolution of stage ϕi, and noise
ϵi−1 ∼ N (0, I) at the resolution of stage ϕi−1. Using
timestep-dependent schedule coefficients α and σ, we com-
pute a noisy image zit = αtx

i+σtϵ
i by applying a timestep-

dependent scaling of ϵi to the image xi. Similarly, we
compute zi−1

s = αsx
i−1 + σsϵ

i−1 by applying a timestep-
dependent scaling of ϵi−1 to the image xi−1. We then use

5



Figure 6. Cascaded Score Distillation (CSD). We simultaneously
distill scores across multiple stages of a cascaded diffusion model
in order to leverage both the global awareness of the first stage and
the higher level of detail contained in later stages. The difference
between the predicted noise and sampled noise is the image gradi-
ent for each stage.

ϕi to predict noise ϵϕi(zit, t, z
i−1
s , s, y) conditioned on the

noisy images, timesteps, and text prompt. Our gradient ∇xi

for stage ϕi for i > 1 is the difference between the pre-
dicted noise and the (higher-resolution) sampled noise ϵi,
weighted by the timestep-dependent function w(t):

∇xiLCSDi(ϕi, xi, xi−1, y) =

w(t)(ϵϕi(zit, t, z
i−1
s , s, y)− ϵi). (2)

With all gradients ∇x1 , . . . ,∇xN computed, we weight
each gradient ∇xi with a user defined λi to provide con-
trol over the impact of the supervision from each stage of
the cascaded model. Thus our full gradient with respect to
any given neural texture θ can be described by:

∇θLCSD(ϕ,x = g(θ), y) =

λ1∇x1LSDS(ϕ1, x1, y)
∂x1

∂θ

+

N∑
i=2

λi∇xiLCSDi(ϕi, xi, xi−1, y)
∂xi

∂θ
. (3)

Note that just as in SDS [44], we can avoid computing
the U-Net Jacobian term ∂ϵϕ(z

i
t,t,z

i−1
s ,s,y)

zit
(not shown in

Eq. (3)) since each stage is entirely independent and our
gradient is only with respect to the high-resolution image
xi. Thus, we directly apply λi∇xi to the image xi without
having to compute the costly backpropagation through the
U-Net. Using the gradient ∇θLCSD(ϕ,x = g(θ), y), we
update the weights of our MLP θ.

4. Experiments
We demonstrate the capabilities of 3D Paintbrush on a wide
variety of meshes (from different sources [55, 56, 61, 65])

Only stage 1 Only stage 2 CSD
Figure 7. Impact of cascaded stages. Different stages of the cas-
caded model provide different levels of granularity and global un-
derstanding. Using only the (low resolution) stage 1 model gives a
low-resolution result in the correct location. While the (high reso-
lution) stage 2 model gives a high-resolution result, it is placed in
the incorrect location. Our CSD simultaneously uses stage 1 and
2, resulting in a highly-detailed texture in the appropriate location.

and prompts. We highlight key properties of our method
such as localization precision and edit specificity. We then
demonstrate the importance and capabilities of our CSD
loss including its high resolution supervision and intuitive
controls. Finally, we evaluate our system against other lo-
calization and editing baselines and ablate the key compo-
nents of our method. In our experiments, we use Deep-
Floyd IF [3] for our cascaded model. Our unoptimized Py-
Torch [43] implementation takes 4 hours on a standard A40
GPU, typically achieving satisfactory results within 2 hours.

4.1. Properties of 3D Paintbrush

3D Paintbrush generality. 3D Paintbrush is capable of
producing highly detailed localizations and textures on a
diverse collection of meshes and prompts (Fig. 4). Our
method is not restricted to any category of meshes and we
show results on organic and manufactured shapes. Further-
more, our local textures can be specified with open vocabu-
lary text descriptions and are not limited to any predefined
categories or constraints. This includes “out-of-domain”
local textures such as the rainbow shinguards on a giraffe
which are not naturally seen in the context of these objects,
yet are precisely placed in semantically meaningful loca-
tions with highly detailed textures.
3D Paintbrush precision and composition. 3D Paintbrush
produces precise localizations and highly-detailed textures
that effectively adhere to these predicted localizations (see
Fig. 2). The tight coupling between the localization and
texture (see the gold chain necklace in Fig. 1) enables seam-
less composition of multiple local textures simultaneously
on the same mesh without any layering artifacts. For exam-
ple, the sharp localization boundary of the “Tie-dye apron”
(in Fig. 2) allows us to composite this local texture on top of
other textures without obstructing these textures in regions
outside of the apron’s boundary.
3D Paintbrush specificity and effectiveness. 3D Paint-
brush produces accurate and high resolution local edits that
closely adhere to the text-specification (see Fig. 10). Our

6



Figure 8. Granular control with CSD. Varying the weight between stage 1 and stage 2 results in control over the details and corresponding
localization. Only using stage 1 (leftmost) is rather coarse; only using stage 2 (rightmost) is highly detailed with an incorrect localization.
Increasing the stage 2 weight (moving left to right) progressively increases the detail and granularity of the supervision, enabling smooth
and meaningful interpolation between stage 1 and 2.

method’s fine-grained results contain intricate details (i.e.
the badge on “Barcelona jersey”) and reflect the subtle dif-
ferences in the text prompts (i.e. the “cape” on the dog is
more tapered than the boxier “poncho”). This specificity al-
lows us to produce many diverse and distinct local styles.
We show multiple local edits on the same mesh for multi-
ple different meshes, demonstrating the effectiveness of our
method on diverse prompts and meshes.

4.2. Importance of Cascaded Score Distillation

Impact and granular control of CSD. Our cascaded score
distillation (CSD) simultaneously distills scores at multiple
resolutions in a cascaded fashion. We observe that differ-
ent stages of the cascaded diffusion model give different
levels of granularity and global understanding (Fig. 7). Us-
ing only the (low resolution) stage 1 model is equivalent to
SDS. Though SDS produces an accurate localization and
coherent texture, the result is low-resolution (see Fig. 9).
Conversely, using only the (high resolution) stage 2 model
gives a high-resolution result, but often fails to properly lo-

SDS

CSD
Figure 9. Importance of super-resolution stage in CSD. Using
stage 1 only (equivalent to SDS) lacks fine-grained details. Incor-
porating the second super-resolution cascaded stage from our CSD
increases the resolution and detail. Input text prompts (from left
to right): Colorful crochet shell, Cactus base, Tiger stripe shirt.

calize the texture leading to undesirable results. Our CSD
simultaneously combines the supervision from stages 1 and
2, resulting in a highly-detailed texture in the appropriate
location. Increasing the stage 2 weight (moving left to right
in Fig. 8) progressively increases the detail and granularity
of the supervision, demonstrating smooth and intuitive in-
terpolation between stage 1 and 2. In our experiments, we
use a fixed weighting scheme, but this result demonstrates
that our method works for a broad range of weights. Quan-
titative evidence supporting the importance of the CSD loss
can bee seen in Tab. 1.

Localization SATR 3D Highlighter Ours
Average Score ↑ 1.89 2.03 4.80

Local Edits Latent Paint Vox-E Ours (SDS) Ours
Average Score ↑ 2.14 2.15 4.06 4.88

Table 1. Quantitative evaluation. We conduct a perceptual
study where users evaluate our localizations and local edits com-
pared to baseline methods (3D Highlighter [10], SATR [2], Latent
Paint [38], Vox-E [49], and our method with standard SDS loss).

4.3. Evaluation

Simultaneous localization and texture. We demonstrate
the importance of simultaneously optimizing the localiza-
tion region and texture in tandem in Fig. 5. We observe
that simultaneous optimization results in highly detailed
textures which effectively conform to the predicted local-
ization regions (Fig. 5, left). Furthermore, the resulting lo-
calization region is sharp and intricate. Alternatively, we
optimize the localization region first and use the predicted
localization to learn a texture which is confined to the (pre-
computed) localization region (Fig. 5, middle). In this case,
the texture is less detailed, and the localization region is less
intricate. Finally, we can learn the texture and localization
region independently (Fig. 5, independent). This results in a
texture (Fig. 5 independent, middle) that is completely de-
coupled from the localization region (Fig. 5 independent,
left). When masking the texture with the localization re-
gion, we observe a misaligned texture with fringe artifacts
(Fig. 5 independent, right).

7



Red bow tie Turtle shell Beautiful rose hump Red bow tie Barcelona jersey Denim overalls

Beautiful roses Colorful crochet base Rainbow headband Camo poncho Superhero cape Tiger stripe hat
Figure 10. 3D Paintbrush is capable of producing a variety of local textures on the same mesh. Each result contains an accurate localization
map (to specify the edit region) and a texture map that conforms to it.

Quantitative evaluation. 3D Paintbrush is the only method
geared towards local editing that natively operates on
meshes. We compare to the closest mesh-based methods
which perform localization (3D Highlighter [10], SATR [2])
and texturing (Latent Paint [38]). We also compare to a
voxel NeRF approach for local 3D editing (Vox-E [49]).

To evaluate our method against these baselines, we con-
duct a perceptual study where 39 users rate the effective-
ness of each method for 9 different meshes (see Tab. 1). 3D
Paintbrush consistently scores the highest for both localiza-
tion and local editing, producing sharper localizations than
3D Highlighter and SATR and higher resolution textures
than Latent Paint and Vox-E. Further quantitative evalua-
tion using CLIP R-Precision and qualitative comparisons to
these baselines are shown in the supplemental material.

Limitations. We illustrate a limitation of our method in
Fig. 11. In cases where the desired local texture has strong
semantic connections to additional components, these aux-
iliary components can sometimes be included in the local-
ization and local texture. For example, a “Pharaoh head-
dress” is closely associated with Egyptian necklaces and
thus our method also localizes and styles this component
as well. Our method also suffers from the Janus effect com-
mon to many text-to-3D methods that use 2D supervision.

5. Conclusion

We presented 3D Paintbrush, a technique that produces
highly detailed texture maps on meshes which effectively
adhere to a predicted localization region. Our system is
capable of hallucinating non-obvious local textures on a
wide variety of meshes (such as heart-shaped sunglasses
on a cow). Our localizations are detailed and accurate, en-

abling seamless post-processing (such as compositing tex-
tures without unwanted fringe). We proposed cascaded
score distillation, a technique capable of extracting super-
vision signals from multiple stages of a cascaded diffu-
sion model. We observe that each stage controls different
amounts of detail and global understanding. Further, vary-
ing the weights for each stage provides control over the re-
sulting local textures. We show the effectiveness of CSD
to locally texture meshes; yet, CSD is general and can be
applied to other domains (such as images, videos, and alter-
native 3D representations). In the future, we are interested
in extending localized editing to capabilities beyond textur-
ing (such as deformations, normal maps, and more).

6. Acknowledgments
We thank the University of Chicago for providing the AI
cluster resources, services, and the professional support of
the technical staff. This work was also supported in part
by gifts from Snap Research, Adobe Research, Google Re-
search, BSF grant 2022363, and NSF grants 2304481 and
2241303. Finally, we would like to thank Brian Kim, Jack
Zhang, Haochen Wang, and the members of 3DL and PALS
for their thorough and insightful feedback on our work.

Fancy saddle Referee shirt Pharaoh headdress
Figure 11. In cases where the desired localization carries a strong
semantic context, elements from that context can also appear in
the localization and style. For example, when adding a pharaoh
headdress, 3D Paintbrush also adds an Egyptian necklace since
they are commonly associated with pharaohs.

8



References
[1] Ahmed Abdelreheem, Abdelrahman Eldesokey, Maks Ovs-

janikov, and Peter Wonka. Zero-shot 3d shape correspon-
dence. In SIGGRAPH Asia 2023 Conference Papers, pages
1–11, 2023. 2

[2] Ahmed Abdelreheem, Ivan Skorokhodov, Maks Ovsjanikov,
and Peter Wonka. Satr: Zero-shot semantic segmentation of
3d shapes. In ICCV, 2023. 2, 7, 8, 1

[3] Stability AI. Deepfloydif, 2023. 6
[4] Sudarshan Babu, Richard Liu, Avery Zhou, Michael Maire,

Greg Shakhnarovich, and Rana Hanocka. Hyperfields: To-
wards zero-shot generation of nerfs from text. arXiv preprint
arXiv:2310.17075, 2023. 2

[5] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. In European conference on computer vi-
sion, pages 707–723. Springer, 2022. 2

[6] Alexey Bokhovkin, Shubham Tulsiani, and Angela Dai.
Mesh2tex: Generating mesh textures from image queries.
arXiv preprint arXiv:2304.05868, 2023. 2

[7] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18392–18402, 2023.
2

[8] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey
Tulyakov, and Matthias Nießner. Text2tex: Text-driven tex-
ture synthesis via diffusion models. In ICCV, 2023. 2

[9] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia.
Fantasia3d: Disentangling geometry and appearance for
high-quality text-to-3d content creation. arXiv preprint
arXiv:2303.13873, 2023. 2

[10] Dale Decatur, Itai Lang, and Rana Hanocka. 3d highlighter:
Localizing regions on 3d shapes via text descriptions. In
CVPR, 2023. 2, 4, 7, 8, 1, 3

[11] Zhiwen Fan, Yifan Jiang, Peihao Wang, Xinyu Gong, Dejia
Xu, and Zhangyang Wang. Unified implicit neural styliza-
tion. In European Conference on Computer Vision, pages
636–654. Springer, 2022. 2

[12] Rao Fu, Xiao Zhan, Yiwen Chen, Daniel Ritchie, and Sri-
nath Sridhar. Shapecrafter: A recursive text-conditioned 3d
shape generation model. Advances in Neural Information
Processing Systems, 35:8882–8895, 2022. 2

[13] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 2

[14] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. In Advances In Neural
Information Processing Systems, 2022. 2

[15] Lin Gao, Tong Wu, Yu-Jie Yuan, Ming-Xian Lin, Yu-Kun
Lai, and Hao Zhang. Tm-net: Deep generative networks for
textured meshes. ACM Transactions on Graphics (TOG), 40
(6):1–15, 2021. 2

[16] William Gao, Noam Aigerman, Thibault Groueix, Vova
Kim, and Rana Hanocka. Textdeformer: Geometry manipu-
lation using text guidance. In ACM SIGGRAPH 2023 Con-
ference Proceedings, pages 1–11, 2023. 2

[17] Huy Ha and Shuran Song. Semantic abstraction: Open-
world 3D scene understanding from 2D vision-language
models. In Proceedings of the 2022 Conference on Robot
Learning, 2022. 2

[18] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. ICCV, 2023. 2

[19] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-
Or. Deep geometric texture synthesis. ACM Transactions on
Graphics (TOG), 39(4):108–1, 2020. 2

[20] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 2

[21] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. The Journal of
Machine Learning Research, 23(1):2249–2281, 2022. 2, 5

[22] Lukas Höllein, Justin Johnson, and Matthias Nießner.
Stylemesh: Style transfer for indoor 3d scene reconstruc-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6198–6208,
2022. 2

[23] Jingwei Huang, Justus Thies, Angela Dai, Abhijit Kundu,
Chiyu Jiang, Leonidas J Guibas, Matthias Nießner, Thomas
Funkhouser, et al. Adversarial texture optimization from
rgb-d scans. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1559–
1568, 2020. 2

[24] Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-
Jun Zha, and Lei Zhang. Dreamtime: An improved optimiza-
tion strategy for text-to-3d content creation. arXiv preprint
arXiv:2306.12422, 2023. 3

[25] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867–876, 2022. 2, 1

[26] Oren Katzir, Or Patashnik, Daniel Cohen-Or, and Dani
Lischinski. Noise-free score distillation, 2023. 2

[27] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded
radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 19729–19739,
2023. 2

[28] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field distilla-
tion. In Advances in Neural Information Processing Systems,
2022. 2

[29] Han-Hung Lee and Angel X Chang. Understanding pure
clip guidance for voxel grid nerf models. arXiv preprint
arXiv:2209.15172, 2022. 2

9



[30] Jiabao Lei, Yabin Zhang, Kui Jia, et al. Tango: Text-driven
photorealistic and robust 3d stylization via lighting decom-
position. Advances in Neural Information Processing Sys-
tems, 35:30923–30936, 2022. 2

[31] Yuhan Li, Yishun Dou, Yue Shi, Yu Lei, Xuanhong Chen, Yi
Zhang, Peng Zhou, and Bingbing Ni. Focaldreamer: Text-
driven 3d editing via focal-fusion assembly. arXiv preprint
arXiv:2308.10608, 2023. 2

[32] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution
text-to-3d content creation. In CVPR, 2023. 1, 2, 3

[33] Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaud-
huri, Noam Aigerman, and Alec Jacobson. Neural subdivi-
sion. ACM Trans. Graph., 39(4), 2020. 2

[34] Kunhao Liu, Fangneng Zhan, Yiwen Chen, Jiahui Zhang,
Yingchen Yu, Abdulmotaleb El Saddik, Shijian Lu, and
Eric P Xing. Stylerf: Zero-shot 3d style transfer of neural
radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8338–
8348, 2023. 2

[35] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Zexiang
Xu, Hao Su, et al. One-2-3-45: Any single image to 3d mesh
in 45 seconds without per-shape optimization. arXiv preprint
arXiv:2306.16928, 2023. 2

[36] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object, 2023. 2

[37] Yiwei Ma, Xiaoqing Zhang, Xiaoshuai Sun, Jiayi Ji, Haowei
Wang, Guannan Jiang, Weilin Zhuang, and Rongrong Ji.
X-mesh: Towards fast and accurate text-driven 3d styliza-
tion via dynamic textual guidance. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 2749–2760, 2023. 2

[38] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and
Daniel Cohen-Or. Latent-nerf for shape-guided generation of
3d shapes and textures. In CVPR, 2023. 1, 2, 3, 7, 8

[39] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In CVPR, pages 13492–13502, 2022. 2

[40] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[41] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,
and Tiberiu Popa. Clip-mesh: Generating textured meshes
from text using pretrained image-text models. In SIGGRAPH
Asia 2022 conference papers, pages 1–8, 2022. 2, 1

[42] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In CVPR, pages 4531–
4540, 2019. 2

[43] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017. 6

[44] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In ICLR,
2023. 2, 5, 6, 1

[45] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren,
Aliaksandr Siarohin, Bing Li, Hsin-Ying Lee, Ivan Sko-
rokhodov, Peter Wonka, Sergey Tulyakov, et al. Magic123:
One image to high-quality 3d object generation using both
2d and 3d diffusion priors. arXiv preprint arXiv:2306.17843,
2023. 2

[46] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International conference on machine learning, 2019. 3

[47] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing of 3d
shapes. In ACM TOG, 2023. 2

[48] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 1, 2

[49] Etai Sella, Gal Fiebelman, Peter Hedman, and Hadar
Averbuch-Elor. Vox-e: Text-guided voxel editing of 3d ob-
jects. In ICCV, 2023. 1, 2, 7, 8

[50] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li,
and Xiao Yang. Mvdream: Multi-view diffusion for 3d gen-
eration. arXiv preprint arXiv:2308.16512, 2023. 2

[51] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,
Matthias Nießner, and Angela Dai. Texturify: Generating
textures on 3d shape surfaces. In European Conference on
Computer Vision, pages 72–88. Springer, 2022. 2

[52] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. 2020. 4

[53] Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni,
Michael Niemeyer, and Federico Tombari. Textmesh: Gen-
eration of realistic 3d meshes from text prompts. arXiv
preprint arXiv:2304.12439, 2023. 1, 2

[54] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural feature fusion fields: 3d distillation of
self-supervised 2d image representations. In 2022 Inter-
national Conference on 3D Vision (3DV), pages 443–453.
IEEE, 2022. 2

[55] TurboSquid. Turbosquid 3d model repository, 2021.
https://www.turbosquid.com/. 6

[56] Oliver van Kaick, Andrea Tagliasacchi, Oana Sidi,
Hao Zhang, Daniel Cohen-Or, Lior Wolf, and Ghassan
Hamarneh. Prior knowledge for part correspondence. Com-
puter Graphics Forum, 30(2):553–562, 2011. 6

[57] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi S. M. Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes,
2021. 2

10



[58] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lifting
pretrained 2d diffusion models for 3d generation. In CVPR,
2023. 1, 2, 3, 5

[59] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and
diverse text-to-3d generation with variational score distilla-
tion. arXiv preprint arXiv:2305.16213, 2023. 1, 2, 3

[60] Xingkui Wei, Zhengqing Chen, Yanwei Fu, Zhaopeng Cui,
and Yinda Zhang. Deep hybrid self-prior for full 3d mesh
generation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5805–5814, 2021. 2

[61] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 6

[62] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and
Sanja Fidler. 3dstylenet: Creating 3d shapes with geometric
and texture style variations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12456–
12465, 2021. 2

[63] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Goj-
cic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion: La-
tent point diffusion models for 3d shape generation. arXiv
preprint arXiv:2210.06978, 2022. 2

[64] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In European Conference on Computer Vision, pages
717–733. Springer, 2022. 2

[65] Qingnan Zhou and Alec Jacobson. Thingi10k: A
dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016. 6

[66] Joseph Zhu and Peiye Zhuang. Hifa: High-fidelity text-
to-3d with advanced diffusion guidance. arXiv preprint
arXiv:2305.18766, 2023. 2, 3

[67] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and
Guanbin Li. Dreameditor: Text-driven 3d scene editing with
neural fields. In SIGGRAPH Asia, 2023. 1, 2

11



Supplementary Material for 3D Paintbrush: Local Stylization of 3D Shapes with
Cascaded Score Distillation

A. Additional Experiments
Variation. For a given mesh and prompt, there are often
multiple valid interpretations for the local edit. With differ-
ent seeds, our method produces various diverse, yet plausi-
ble, results (see Fig. 12) allowing users to choose the output
that best matches their desired edit.

Qualitative comparisons. We show qualitative compar-
isons of our method to other localization and editing tech-
niques. For our localizations, we compare to the mesh-
native approaches 3D Highlighter [10] and SATR [2]. Our
localizations are more accurate and more highly-detailed
than 3D Highlighter and SATR (see Fig. 13). For example,
the position and shape of our apron more closely adheres to
that of an apron and our necklace contains the fine-grained
chain links whereas both 3D Highlighter and SATR pro-
duce an overly smooth band. Since our method is the first
approach to perform local edits on meshes, we evaluate our
local editing capabilities by comparing to the mesh-native
global editing method Latent Paint [38] and the voxel-based
NeRF local editing method Vox-E [49]. In Fig. 14, we
observe that our method produces local stylizations with

Plaid scarf

Colorful crochet hat

Figure 12. Variation. 3D Paintbrush can give multiple varied, yet
plausible, outputs for a given local style depending on the input
seed. We show results on two different seeds for each local style.

Ours

3D Highlighter

SATR

Figure 13. Qualitative localization comparison. Our localiza-
tions are more accurate and finer-grained than 3D Highlighter [10]
and SATR [2]. Full input text prompts (from left to right): a 3D
render of a gray cow with a yellow chain link necklace, a 3D ren-
der of a gray person with a yellow apron, a 3D render of a gray
camel with a yellow turtle shell, a 3D render of a gray robot with
a yellow batman chest emblem.

higher resolution textures than Latent Paint [38] and Vox-
E [49]. Furthermore, our texture edits are contained to a
local semantic region corresponding to the target edit. In
contrast, Vox-E often makes changes to parts of the texture
that are unrelated to the target edit and Latent Paint consis-
tently makes changes to the entire texture.

Clip R-Precision ↑
Method CLIP B/32 CLIP B/16 CLIP L/14

Loc Style Loc Style Loc Style

3DH 13.3 n/a 7.0 n/a 23.7 n/a
LatentPaint n/a 20.0 n/a 20.0 n/a 20.0
Ours 26.7 60.0 13.0 40.0 46.7 73.3

Table 2. Quantitative evaluation. We compare our localizations
to 3D Highlighter [10] (3DH) and our local textures to Latent
Paint [38] and report CLIP R-Precision. Note, 3DH does not pro-
duce stylizations and Latent Paint does not produce localizations.

Quantitative evaluation with CLIP R-Precision. We
compare our method to mesh-native baselines using CLIP
R-Precision, an automated method for measuring alignment
between generations and text prompts commonly used in
text-to-3D [10, 25, 41, 44]. Given a set of text prompts

1



Ours

Latent Paint

Vox-E

Figure 14. Qualitative local stylization comparison. Our 3D
Paintbrush gives more highly detailed and local edits than Latent
Paint [38] and Vox-E [49]. Full input text prompts (from left to
right): a 3D render of a gray hand with a fancy gold watch, a 3D
render of a gray Lego minifigure with a Barcelona jersey, a 3D
render of a gray desk chair with a colorful doily seat cushion, a 3D
render of a gray person with a tie-dye apron.

and corresponding generated textured meshes, this metric
reports the percentage with which CLIP is able to retrieve
the correct text prompt used to generate each given tex-
tured mesh. 3D Paintbrush consistently scores the highest
for both localization and local texturing (Tab. 2). We give
further details on CLIP R-Precision in Appendix B.

MLP and direct optimization ablation. We show an abla-
tion of using MLPs by replacing them with direct optimiza-
tion for the localization and texture maps (Fig. 15). Our full
method (far left) using MLPs for both the localization and
texture maps gives an accurate and contiguous localization
with a clean, detailed local texture. Directly optimizing the
texture map values instead of using an MLP (center left)
results in a noisier, grainy texture. Using an MLP for the
localization map is especially important since we want the
localizations to be mostly contiguous and the smoothness
of the MLPs gives us this. Directly optimizing the local-
ization map values instead of using an MLP gives a non-
contiguous, speckled localization. This localization detri-

Both MLP Direct texture Direct Loc Both direct
Figure 15. MLP ablation. We ablate the use of MLPs by using di-
rect optimization for both the localization and texture maps. Using
MLPs provides smooth localization and texture while using direct
optimization leads to noisy and less coherent results.

Ours w/o separate MLP w/o background loss
Figure 16. Background loss ablation. Our method (left) pro-
duces an accurate localization and texture that are highly detailed
and tightly coupled. Removing the background MLP Fψ and in-
stead learning the background through the main texture map Tmap
leads to poor localization which also degrades the texture (middle).
Removing the background loss completely leads to the incorpora-
tion of superfluous elements from the input model (i.e. a bill on a
duck) into the localization (right).

mentally affects the texture as well, whether the texture is
optimized either with an MLP (center right) or directly (far
right).

Background loss ablation. We opt to learn the background
texture in a separate map from the desired texture map (mid-
dle and bottom branches of Fig. 3) enabling our method
to produce accurate localizations with tightly coupled and
detailed textures (Fig. 16, left). If we instead remove the
explicit background texture map (and MLP) and allow the
background to be predicted using the same texture map
as the main edit texture Tmap, (by applying background
loss to Tmap masked with the inverse of the localization
mask), then the localization and texture become misaligned
(Fig. 16, middle). In this case, when the edit and back-
ground share the same texture map, if the localization re-
gion expands during training to include features that had
been considered background, the edit texture may retain
these features of the object (rather than expand the edit tex-
ture features to fill the localization) and the localization may
continue to expand. If we instead remove the background
loss entirely, this also produces undesirable results (Fig. 16,
right). Specifically, we observe extra elements incorporated
in additional localization regions that contain characteristics
of the input shape (e.g. bill on a duck).

Localization loss ablation. We show an ablation on the
localization loss (see Fig. 17). Using our full method, we
obtain a precise localization that accurately depicts the local
edit region “polo shirt” (left). Without our localization loss,

2



Ours w/o localization loss
Figure 17. Localization loss ablation. We show an ablation of the
localization loss using the local edit “polo shirt” on a person mesh.
Without this loss, there is no explicit incentive for the localization
to be visually meaningful in isolation which can lead to inaccurate
localization regions (right).

the only supervision signal for the localization region comes
from the style loss as that depends on the localization region
to obtain the masked texture. From just this signal, there
is no incentive for the localization to have visual meaning
and thus we often end up with inaccurate localizations (right
localization). These poor localizations can lead to worse
textures as well (right texture).

B. Implementation and Further Details
MLP architecture. Our MLPs consist of a positional en-
coding layer followed by 6 linear layers. Both texture MLPs
and the localization MLP take a dimension 3 input corre-
sponding to a 3D coordinate. All linear layers have width
256 and each linear layer is followed by a ReLU activation
and subsequently a layer norm. The localization MLP out-
puts a single probability between 0 and 1, while the texture
MLPs output 3 values each also within the range 0 to 1 cor-
responding to RBG values.

Optimization and supervision details. We use PyTorch
to implement our method. For our optimization, we use
an Adam optimizer with a constant learning rate of 1e−4.
We use the Huggingface Diffusers implementation of Deep-
Floyd IF for our diffusion supervision. For all experiments,
we use a classifier free guidance weight of 20. We train for
4 hours on a single A40 GPU which typically equates to
4000 iterations.

Text prompt formulation. To create the text prompts, our
method takes as input the object class (i.e. “cow”), the de-
sired style term (i.e. “colorful crochet”) and the desired lo-
cal edit (i.e. “hat”). To create yl, we formulate the prompt
“a 3D render of a gray [object class] with a yellow [local
edit]” or specifically, “a 3D render of a gray cow with a yel-
low hat.” To get yt, we use “a 3D render of a gray [object
class] with a [style term] [local edit]” or “a 3D render of a
gray cow with a colorful crochet hat.” To obtain yb, we use
“a 3D render of a [object class] with a yellow [local edit]”

or “a 3D render of a cow with a yellow hat.”
View selection. At each iteration of our optimization we
render our mesh from multiple views. To select these views,
we randomly sample camera elevation, azimuth, and radius
from predefined ranges that can be specified by the user. In
all of our experiments, we render 4 views each iteration.
For all experiments, we sampled azimuths ranging from 0
to 360 degrees. By default, we sample elevations from the
range 0 − 150 degrees, however for some meshes, we nar-
row this range to 0− 100 degrees. For all experiments, our
camera radius is sampled uniformly from the range 1− 1.5.
Quantitative evaluation with Clip R-Precision details.
To quantitatively evaluate our method, we use a CLIP R-
Precision metric tailored to evaluating either localizations
or local styles. We create 15 local edits and record the both
the target localization yl and target local style yt for each
edit as well as their corresponding generated localizations
and local styles. To create our localizations for 3D High-
lighter [10], we run 3D Highlighter on each of those 15 yl’s
to get 15 localizations. To create our local styles for Latent
Paint [38], we run Latent Paint on each of the 15 yt’s. To
compute the CLIP R-Precision score for localizations for
a given method, we do the following. For each localiza-
tion result Li of the 15 total from this method, we compute
the CLIP similarity between renders of Li and each of the
15 yl’s to get 15 similarity scores. If the yl with the high-
est CLIP similarity to Li is the yl that was used to gener-
ate Li then this Li is awarded a score of 1, otherwise it is
awarded a score of 0. To compute the CLIP R-Precision for
this method, we take the average score of all 15 Li’s and
multiply by 100 to get a percentage. The CLIP R-Precision
for the local styles is computed similarly, except using lo-
cal styles instead of localizations. Specifically to compute
the CLIP R-Precision of the local style for a given method,
we do the following. For each local style result Si of the
15 total from this method, we compute the CLIP similar-
ity between renders of Si and each of the 15 yt’s to get 15
similarity scores. If the yt with the highest similarity score
to Si is the yt that was used to generate Si then this Si is
awarded a score of 1, otherwise it is awarded a score of 0.
To compute the CLIP R-Precision for this method, we take
the average score of all 15 Si’s and multiple by 100 to get a
percentage.

3


	. Introduction
	. Related Work
	. Method
	. Local Neural Texturing
	. Visual Guidance for Localized Textures
	. Score Distillation and Cascaded Diffusion
	. Cascaded Score Distillation

	. Experiments
	. Properties of 3D Paintbrush
	. Importance of Cascaded Score Distillation
	. Evaluation

	. Conclusion
	. Acknowledgments
	. Additional Experiments
	. Implementation and Further Details

